Home
Class 12
MATHS
If k a n d n are positive integers and s...

If `k a n d n` are positive integers and `s_k=1^k+2^k+3^k++n^k ,` then prove that `sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot`

Text Solution

Verified by Experts

`S = underset(r=1)overset(m)sum.^(m+1)C_(r) S_(r)`
`= [.^(m+1)C_(1)s_(1)+.^(m+1)C_(2)s_(2) + "……." + .^(m+1)C_(m)s_(m)]`
`= .^(m+1)C_(1)(1+2+3+"….."+n)`
`+ .^(m+1)C_(2)(1^(3)+2^(3)+3^(3)+"……."+n^(3))`
`+.^(m+1)C_(3)(1^(3)+2^(3)+3^(3)+"......."+n^(m))`
`+.^(m+1)C_(m)(1^(m)+2^(m)+3^(m)+"....."+n^(m))`
`= (.^(m+1)C_(1)1+.^(m+1)C_(2)1^(2)+.^(m+1)C_(3)1^(3) + "......."+.^(m+1)C_(m)1^(m))`
`+(.^(m+1)C_(1)2+.^(m+1)C_(2)2^(2)+.^(m+1)C_(3)2^(3)+"......." +.^(m+1)C_(m)2^(m))+"......."+(.^(m+1)C_(1)n+.^(m+1)C_(2)n^(2)+"......"+.^(m+1)C_(m)n^(m))`
` = [(1+1)^(m+1)-1-.^(m+1)C_(m+1)1^(m+1)]`
`+[(1+2)^(m+1)-1-.^(m+1)C_(m+1)2^(m+1)]`
`+[(1+3)^(m+1)-1-.^(m+1)C_(m+1)3^(m+1)]+"......"`
` = (2^(m+1)-1^(m+1))+(3^(m+1)-2^(m+1))+(4^(m+1)-3^(m+1))+"......"`
`+ [(1+n)^(m+1)-n^(m+1)]-n`
`= (1+n)^(m+1)-1-n=(1+n)^(m+1)- (n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

If a_k=1/(k(k+1)) for k=1 ,2……..,n then prove that (sum_(k=1)^n a_k)^2 =n^2/(n+1)^2

sum_(k=1)^ook(1-1/n)^(k-1) =?

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

If n is a positive integer then using the indentiy (1+x)^(n)=(1+x)^(3)(1+x)^(n-3) , prove that ""^(n)C_(r)=""^(n-2)C_(r)+3*""^(n-3)C_(r-1)*""^(n-3)C_(r-2)+""^(n-3)C_(r-3)

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

The value of cot(sum_(n=1)^(23)cot^-1(1+sum_(k=1)^n2k)) is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .