Home
Class 12
MATHS
Prove that sum(r=0)^(n) ""^(n)C(r )sin ...

Prove that `sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx`.

Text Solution

Verified by Experts

`S = underset(r=0)overset(n)sum.^(n)C_(r)sin rx . Cos (n-r) x`
` = .^(n)C_(0) sin 0x cos n x + .^(n)C_(1) sin x cos (n-1)x`
`+ .^(n)C_(2)sin 2x cos (n-2)x"….." + .^(n)C_(n-1)sin (n-1) x cos x`
`+ .^(n)C_(n)sin nx cos 0x`
Writing the sum in reverse order, we get
`S = .^(n)C_(n) sin nx cos 0x + .^(n)C_(n-1) sin(n-1)xcos x`
`+ .^(n)C_(n-2)sin(n-2)x cos 2x + "......."`
`+ .^(n)C_(1) sinx cos (n-1)x+.^(n)C_(0) sin 0x cos nx`
`:. S = .^(n)C_(0) sin nx cos 0x + .^(n)C_(1) sin (n-1)x cos x`
`+ .^(n)C_(2) sin(n-2)x cos 2x + "......"`
`+ .^(n)C_(n-1) sinx cos(n-1)x + .^(n)C_(n) sin 0x cos x nx`
Adding (1) and (2), we get
`2S = .^(n)sin(0x+nx) + .^(n)C_(1)sin(x+(n-1)x)`
`+ .^(n)C_(2) sin (2x+(n-2)x) + "......" + .^(n)C_(n) sin (nx+0x)`
` = (.^(n)C_(0) + .^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+"......"+.^(n)C_(n)) sin nx`
`= 2^(n) sin nx`
`:. S = 2^(n-1) sin nx`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Find the sum sum_(r=0) .^(n+r)C_r .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .