Home
Class 12
MATHS
Prove that 2 le (1+ (1)/(n))^(n) lt 3 fo...

Prove that `2 le (1+ (1)/(n))^(n) lt 3` for all `n in N`.

Text Solution

Verified by Experts

Let `a_(n) = l(1+(1)/(n))^(n)`
For `n = 1, (1+1/n)^(n) = 2`
Now, `(1+1/n)^(n) = .^(n)C_(0) + .^(n)C_(1) (1/n) + .^(n)C_(2)(1/n)^(n) + "……." + .^(n)C_(r)(1/n)^(r ) + "……" + .^(n)C_(n)(1/n)^(n)`
` = 1+1+(n(n-1))/(2!) (1)/(n^(2)) + (n(n-1)(n-2))/(3!) = 1/(n^(3)) + "......"`
` + (n(n-1)xx"......"xx2xx1)/(n!) (1)/(n^(n)) " " (1)`
` = 2+(1)/(2!)(1-(1)/(n)) + (1)/(3!)(1+(1)/(n))(1-(2)/(n)) +"....."`
`+ (1)/(n!)(1-(1)/(n))(1-(2)/(n))"......"(1-(n-1)/(n))" "(2)`
Hence, `a_(n) ge 2 ` for all `n in N`.
Also, `a_(n) le 1 +1 + (1)/(2!) + (1)/(3!) + "....." + (1)/(r!) + "......" + (1)/(n!)`
Fo` 2 le r le n`, we have `r! = 1 xx 2 xx 3 xx "......" xx r ge 2^(r-1)`.
`:. a_(n) le 1 + 1 + 1/2 + 1/(2^(2))+ "......" + (1)/(2^(r-1))+"....."+(1)/(2^(n-1))`.
` = 1+(1-(1//2)^(n))/(1-(1//2))`
` = 1+2(1-1/(2^(n))) = 3 - (1)/(2^(n-1))`
`:. a_(n) le 3 - 1/(2^(n-1)) lt 3 AA n ge 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in N

Prove that [(n+1)//2]^n >(n !)dot

Find the value of i^n+i^(n-1)+i^(n-2)+i^(n-3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Prove that log_n(n + 1) > log_(n + 1) (n + 2) , for n > 1.

Prove that (n !)^2 < n^n n! < (2n)! , for all positive integers n.

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

If A={:[(3,-4),(1,-1)]:}, then by principle of mathematics induction show that, A^(n)={:[(1+2n,-4n),(n,1-2n)]:} for all n in N.

Prove by induction that n(n+1)(2n+1) is divisible by 6 for all ninNN .