Home
Class 12
MATHS
If T0,T1, T2, ,Tn represent the terms i...

If `T_0,T_1, T_2, ,T_n` represent the terms in the expansion of `(x+a)^n ,` then find the value of `(T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot`

Text Solution

Verified by Experts

`(x-a)^(n) = .^(n)C_(0)x^(n) + .^( n)C_(1)x^(n-1)a+.^(n)C_(2)x^(n-2)a^(2)+.^(n)C_(3)x^(n-3)a^(3)+"…."`
`= T_(0) + T_(1) + T_(2) + T_(3) + "……"`
Repalcing a by ai, we get
`(x+ai)^(n) = .^(n)C_(0)x^(n) + .^(n)C_(1)x^(n-1)ai + .^(n)C_(2)x^(n-2)(ai)^(2) + .^(n)C_(3)x^(n-3) (ai)^(3) + "....."`
` = (.^(n)C_(0)x^(n)-.^(n)C_(1)x^(n-2)a^(2) + .^(n)C_(4)x^(n-4)a^(4)-"......") + i(.^(n)C_(1)x^(n)a-.^(n)C_(3)x^(n-3)a^(3)+.^(n)C_(5)x^(n-5)a^(5)-"......")`
` = (T_(0) - T_(2) + T_(4) - ".....") + i(T_(1) - T_(3) + T_(5)-".....")`
Taking modulus of both sides and squaring, we get
`|x+ai|^(2n)=|(T_(0)-T_(2)+T_(4)-".......") + i(T_(i ) - T_(3) + T_(5) - ".....")|^(2)`
or `(x^(2)+a^(2))^(n) = (T_(0) - T_(2) + T_(4)-"......")^(2)+(T_(1) - T_(3) + T_(5) -"......")^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of t^8 in the expansion of (1+2t^2-t^3)^9 .

If 51+53+55+…+ t_(n) = 5151 , then find the value of t_(n) .

If x=3t " and " y=(2t)/3-1 , then find the value of t for which x = 3y.

If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -

If T_n=sin^ntheta+cos^ntheta Prove that (T_3-T_5)/(T_1)=(T_5-T_7)/(T_3)

(1)/(4) T T, (1)/(2)Tt,(1)/(4) t t is binomial expansion of

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

If t is a parameter and x=t^(2)+2t, y=t^(3)-3t , then the value of (d^(2)y)/(dx^(2)) at t=1 is -

Find the locus of the point (t^2+t+1,t^2-t+1),t in Rdot

(vi) Find the value of t if the point (2,t^2-5t-6) lie on the x-axis.