Home
Class 12
MATHS
If n=12 m(m in N), prove that .^n C0-(...

If `n=12 m(m in N),` prove that
`.^n C_0-(.^n C_2)/((2+sqrt(3))^2)+(.^n C_4)/((2+sqrt(3))^4)-(.^n C_6)/((2+sqrt(3))^6)+.......=` ` (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot`

Text Solution

Verified by Experts

`.(n)C_(0)-(.^(n)C_(2))/((2+sqrt(3))^(2))+(.^(n)C_(4))/((2+sqrt(3))^(4))-(.^(n)C_(6))/((2+sqrt(3))^(6))+"...."`
= Real part of `(1+(i)/(2sqrt(3)))^(n)`
= Real part of `(1+i(2-sqrt(3))^(n)`
= Real part of `(1+ I tan'(pi)/(12))^(n)`
= Real part of `((cos'pi/12+isin'(pi)/(12))^(n))/(cos^(n)'(pi)/(12))`
= Real part of `((cos' (npi)/(12)+isin'(npi)/(12)))/(cos^(n)'(pi)/(12))`
` = (cos'(npi)/(12))/(cos^(n)'(pi)/(12)) = (cos mpi)/(cos^(n)'(pi)/(12))`
` = (-1)^(m)((2sqrt(2))/(1+sqrt(3)))^(n) , [:' cos'(pi)/(12) = (sqrt(3) + 1)/(2sqrt(2))]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that .^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

lim_(n to oo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt(n^(2)-3^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))]

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .