Home
Class 12
MATHS
Prove that sum(r=1)^(k) (-3)^(r-1) (3n)^...

Prove that `sum_(r=1)^(k) (-3)^(r-1) (3n)^C_(2r-1) = 0` , where `k = 3n//2` and n is an even integer.

Text Solution

Verified by Experts

`S = underset(r=t)overset(k)sum (-3)^(r-1) .^(3n)C_(2r-1), k = (3n)/(2)` and n is even
Let `k = (3(2m))/(2) = 3m`
Then, `S = underset(r=1)overset(3m)sum(-3)^(r-1) xx .^(6m)C_(2r-1)`
`= .^(6m)C_(1)-3.^(6m)C_(3)+3^(2).^(6m)C_(5)-"……"(-3)^(3m-1).^(6m)C_(6m-1)`
`= 1/(sqrt(3))[sqrt(3).^(6m)C_(1)-(sqrt(3))^(3).^(6m)C_(3) + (sqrt(3))^(5).^(6m)C_(5)-"......"`
` + (-1)^(3m-1)(sqrt(3))^(6m-1).^(6m)C_(6m-1)]`
There is an alternate sign series with odd binomial coefficients.
Hence, we should replace x by `sqrt(3)i` in `(1+x)^(6m)`. Therefore,
`(1+sqrt(3)i)^(6m) = .^(6m)C_(0)+.^(6m)C_(1)(sqrt(3)i)+.^(6m)C_(2)(sqrt(3)i)^(2)+.^(6m)C_(3)(sqrt(3)i)^(3)+"...."+.^(6m)C_(6m)(sqrt(3)i)^(6m)`
`rArr sqrt(3) xx .^(6m)C_(1) -(sqrt(3))^(3).^(6m)C_(3)+(sqrt(3))^(5).^(6m)C_(5)+"...."`
= Imaginary part in `(1+sqrt(3)i)^(6m)`
`= "Im"[2^(6m)(1/2+(sqrt(3))/(2))^(6m)]`
` = "Im"[2^(6m)(cos2mpi + i sin 2m pi)]`
` = "Im" [2^(6m)] = 0`
`rArr S = 0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

The value of sum_(r=1)^(n+1)(sum_(k=1)^n ^kC_(r-1)) (where r, k, n in N ) is equal to