Home
Class 12
MATHS
Which is larger : (99^(50)+100^(50)) or ...

Which is larger : `(99^(50)+100^(50))` or `(101)^(50)`.

Text Solution

Verified by Experts

We have
`101^(50) = (100 + 1)^(50) = .^(50)C_(0)100^(50) + .^(50)C_(1) 100^(49) + .^(50)C_(2)100^(48) + "…"`
` = 100^(50) + 50 xx 100^(49) + (50 xx 49)/(1 xx 2) x 100^(48)`
` + ( 50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47)"….."(1)`
and `99^(50) = (100 - 1)^(50)`
`= .^(50)C_(0)100^(50) - .^(50)C_(1)100^(49) + .^(50)C_(2)100^(48)+"...."`
` = 100^(50) - 50 xx 100^(49) + (50 xx 49)/(1 xx 2) xx 100^(48)`
`- (50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47)"......"(2)`
Substracting (2) form (1), we get
`101^(50) - 99^(50) = 100^(50) + 2 xx (50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47) + "......." gt 100^(50)`
Hence, `101^(50) gt 100^(50) + 99^(50)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Which is larger (1.01)^1000000 or 10,000?

Evaluate : i^(50)

Show that 101^(50)gt 99^(50)+100^(50)

A and B toss a fair coin each simultaneously 50 times. The probability that both of them will not get tail at the same toss is a. (3//4)^(50) b. (2//7)^(50) c. (1//8)^(50) d. (7//8)^(50)

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

If H_n=1+1/2+...+1/ndot , then the value of S_n=1+3/2+5/3+...+(99)/(50) is a. H_(50)+50 b. 100-H_(50) c. 49+H_(50) d. H_(50)+100

(101)^(3)-(51)^(3)-(50)^(3)

Solve cos^(50)x-sin^(50)x=1

The coefficient of x^(50) in (x+^(101)C_(0))(x+^(101)C_(1)).....(x+^(101)C_(50)) is

If A=int_0^1 x^(50)(2-2x)^(50)dx ,B=int_0^1 x^(50)(1-x)^(50)dx , which of the following is true? (A) A=2^(50)B (B) A=2^(-50)B (C) A=2^(100)B (D) A=2^(-100)B