Home
Class 12
MATHS
Statement 1: If p is a prime number (p!=...

Statement 1: If `p` is a prime number `(p!=2),` then `[(2+sqrt(5))^p]-2^(p+1)` is always divisible by `p(w h e r e[dot]` denotes the greatest integer function). Statement 2: if `n` prime, then `^n C_1,^n C_2,^n C_2 ,^n C_(n-1)` must be divisible by `ndot`

Text Solution

Verified by Experts

We have,
`(2+sqrt(5))^(n) + (2-sqrt(5))^(n)`
`= 2{2^(p) + .^(p)C_(2)(2^(p-2))(5) + .^(p)C_(4)(2^(p-4))(5^(2))+"…."+.^(P)C_(p-1)(2)(5^((p-1)//2))}"….."(1)`
From (1), at is clear that `(2+sqrt(5))^(p) + (2-sqrt(5))^(p)` is an integer.
Also, `-1 lt [(2-sqrt(5))^(p)]` , (as p is odd)
`= (2+sqrt(5))^(p) + (2-sqrt(5))^(p)`
So, ` [(2+sqrt(5)y^(2)] = (2+sqrt(5))^(p) + (2-sqrt(5))^(p)`
` = 2^(p+1)+.^(p)C_(2)(2^(p-1)) (5) + "......."`
`+.^(p)C_(p-1)(2)^(2) (5^((p-1)//2)))`
`:. [(2-sqrt(5))^(p)] - 2^(p+1) = 1 {.^(p)C_(2)(2^(p-2))(5) + .^(p)C_(4) (2^(p-4))(5^(2))`
`+ "......." + .^(p)C_(p-1)(2)(5^((p-1)//2))]`
Now, all the binomial coefficients `.^(p)C_(2), .^(p)C_(4),"......"..^(p)C_(p-1)` are divisible by the prime p.
Thus, R.H.S. is divisible by p.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest integer function, then the value of p(1-f) is equal to 1 b. 2 c. 2^n d. 2^(2n)

If p be a natural number, then prove that, p^(n+1)+(p+1)^(2n-1) is divisible by (p^(2)+p+1) for every positive integer n.

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

If 9^7-7^9 is divisible by 2^n , then find the greatest value of n ,w h e r en in Ndot

In n is a natural number,n(n + 1)(n + 2) will always divisible by

If 9^7+7^9 is divisible b 2^n , then find the greatest value of n ,w h e r en in Ndot

When P is a natural number then p^(n+1)+(p+1)^(2n-1) is divisible by

If n be a positive integer and P(n):4^(5n)-5^(4n) P(n) is divisible by -

Find n if n P_1=2

If n lt p lt 2n and p is prime and N = .^(2n)C_n , then