Home
Class 12
MATHS
Find the sum .^(n)C(1) + 2 xx .^(n)C(2)...

Find the sum `.^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n)`.

Text Solution

Verified by Experts

`S = 0 xx .^(n)C_(0) + 1 xx .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……"`
`+ (n-1) xx .^(n)C_(1) + n xx .^(n)C_(n) "……"(1)`
`:. S = n xx .^(n)C_(n) + (n-1) xx .^(n)C_(n-1) + "……" + 1 xx .^(n)C_(1) + 0 xx .^(n)C_(0)`
or `S = n xx .^(n)C_(0) + (n-1) xx .^(n)C_(1) + "......"`
`+ 1 xx .^(n)C_(n-1) + 0 xx .^(n)C_(2) "....."(2)`
Adding (1) and (2), we get
`2S = n(.^(n)C_(0) + .^(n)C_(1) + .^(n)C_(2) + "......." + .^(n)C_(n)) = n xx 2^(n)`
`:. S = n xx 2^(n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

If .^(n)C_(3)=.^(n)C_(2) , then find .^(n)C_(2) .

If .^(n)C_(4)=.^(n)C_(2) , then find .^(n)C_(3) .

If .^(n)C_(7)=.^(n)C_(2) , then find .^(n)C_(2) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If .^(n)C_(5)=.^(n)C_(3) , then find .^(n)C_(4) .

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .