Home
Class 12
MATHS
If n is a positive integer, prove that 1...

If `n` is a positive integer, prove that `1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)+.......+(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot`

Text Solution

Verified by Experts

Given sum is
`S = .^(2n)C_(0) - .^(2n)C_(1) + .^(2n)C_(2)- "……" + (-1)^(n-1) xx .^(2n)C_(n-1)`
` :. 2S = 2(.^(2n)C_(0) - .^(2n)C_(1) + .^(2n)C_(2) -"….." + (-1)^(n-1) xx .^(2n)C_(n-1))`

`= (.^(2n)C_(0) + .^(2n)C_(2n)) - (.^(2n)C_(1) + .^(2n)C_(2n-1)) + (.^(2n)C_(2) + .^(2n)C_(2n-2))`
`-"....."+((-1)^(n-1) xx .^(2n)C_(n-1) + (-1)^(n+1) xx .^(2n)C_(n+1)))`
` = [.^(2n)C_(0) - .^(2n)C_(1) + .^(2n)C_(2) - .^(2n)C_(3) + "......" + (-1)^(n-1) xx .^(2n)C_(n+1)`
`+ (-1)^(n) xx .^(2n)C_(n) + (-1)^(n+1) xx .^(2n)C_(n+1) + "......" + .^(2n)C_(2n))]`
`-(-1)^(n) xx .^(2n)C_(n)`
` = (1-1)^(2n)+ (-1)^(n+1)xx.^(2n)C_(n)`
`:. S = (-1)^(n+1) ((2n)!)/(2(n!)^(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If n is a positive integer , then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is -

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If n is a positive integer, show that, (n+1)^(2) + (n+2)^(2) + …+ 4n^(2) = (n)/(6)(2n+1)(7n+1)

Show : 2^(n)-(n)/(1!).2^(n-1)+(n(n-1))/(2!).2^(n-2)-....+(-1)^(n)=1

If n is a possible integer, then (sqrt3+1)^(2n)-(sqrt3-1)^(2n) is

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

Show that (.^(4n)C_(2n))/(.^(2n)C_(n))=(1.3.5......(4n-1))/({1.3.5......(2n-1)}^(2)) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .