Home
Class 12
MATHS
Prove that sum(k=0)^(n) (-1)^(k).""^(3n...

Prove that ` sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)`

Text Solution

Verified by Experts

We have,
`S = underset(k = 0)overset(n)sum(-1)^(k) . .^(3n)C_(k) = .^(3n)C_(0) - .^(3n)C_(1) + .^(3n)C_(2) + "……" + (-1)^(n)..^(3n)C_(n)`
But
`.^(3n)C_(0) = .^(3n-1)C_(0)`
`-.^(3n)C_(1) = -.^(3n-1)C_(0) - .^(3n-1)C_(1)`
`.^(3n)C_(2) = .^(3n-1)C_(1) .^(3n-1)C_(2)`
`-.^(3n)C_(3) = -.^(3n-1)C_(2) - .^(3n-1)C_(3)`
`{:("......"),("......"):}" "{:("......"),("......"):}`
`(-1)^(n)..^(3n)C_(n) = (-1)^(n).^(3n-1)C_(n-1)+(-1)^(n).^(3n-1)C_(n)`
On adding, we get
`S = (-1)^(n).^(3n-1)C_(n)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then find n

sum_(k=1)^ook(1-1/n)^(k-1) =?

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is