Home
Class 12
MATHS
Find the sum (sumsum)(0leiltjlen) ""^(n)...

Find the sum `(sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`.

Text Solution

Verified by Experts

`underset(0leiltjlen)(sumsum).^(n)C_(i) = ((underset(i=0)overset(n)sumunderset(j=0)overset(n)sum.^(n)C_(i))-underset(i=0)overset(n)sum.^(n)C_(i))/(2)`
`= ((underset(i=0)overset(n)sum(n+1)^(n)C_(i))-underset(i=0)overset(n)sum.^(n)C_(i))/(2)`
` = ((n+1)2^(n)-2^(n))/(2)`
`= n xx 2^(n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .