Home
Class 12
MATHS
Find the value of sumsum(0leiltjlen) (""...

Find the value of `sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j))`.

Text Solution

Verified by Experts

`underset(0leiltjlen)(sumsum)(.^(n)C_(i)+.^(n)C_(j))=((underset(i=0)overset(n)sumunderset(j=0)overset(n)sum(.^(n)C_(i)+.^(n)C_(j)))-underset(i=0)overset(n)sum2.^(n)C_(i))/2`
`= ((underset(i=0)overset(n)sum(underset(j=0)overset(n)sum.^(n)C_(i)+underset(j=0)overset(n)sum.^(n)C_(j)))-2xx2^(n))/(2)`
` = ((underset(i=0)overset(n)sum(.^(n)C_(i)underset(j=0)overset(n)sum1+2^(n)))-2^(n+1))/(2)`
`= ((underset(i=0)overset(n)sum(.^(n)C_(i)(n+1)+2^(n)))-2^(n+1))/(2)`
`= ((n+1)underset(i=1)overset(n)sum.^(n)C_(i)+2^(n)underset(i=0)overset(n)sum1-2^(n+1))/(2)`
` = ((n+1)2^(n)+2^(n)(n+1)-2^(n+1))/(2)`
` = (n+1)2^(n) - 2^(n) = n2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot