Home
Class 12
MATHS
Find the value of (sumsum)(0leiltjlen) ...

Find the value of `(sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j))`.

Text Solution

Verified by Experts

Here sum does nto change if we replace `i` by `n-1` and j by `n-j`.
By doing so, in fact we are writing the series in the reverse order.
Therefore, `S = underset(0leiltjlen)(sumsum)(i+j)(.^(n)C_(i)+.^(n)C_(j))" "(1)`
`=underset(0leiltjlen)(sumsum)(n-i+n-j)(.^(n)C_(n-i)+.^(n)C_(n-j))`
`=underset(0leiltjlen)(sumsum)(2n(-i+j))(.^(n)C_(i) + .^(n)C_(j))" "(2)`
Adding (1) and (2), we have
`2S = 2n underset(0leiltjlen)(sumsum)(.^(n)C_(i) +.^(n)C_(j))`
or `S = n xx n2^(n) = n^(2)2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the sum sumsum_(0leiltjlen)"^nC_i

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

Find the value of .^(4n)C_0+^(4n)C_4+^(4n)C_8+...+""^(4n)C_(4n) .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .