Home
Class 12
MATHS
Find the following sums : (i) .^(n)C(0...

Find the following sums :
(i) `.^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....."`
(ii) `.^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...."`
(iii) `.^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....."`
(iv) `.^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......"`
(v) `.^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...."`
(vi) `.^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."`

Text Solution

Verified by Experts

Consider,
`(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x + .^(n)C_(2)x^(2) + .^(n)C_(3)x^(3) + "…." + .^(n)C_(n)x^(n)`
Put `x = i`, where `i = sqrt(-1)`
`:. (1+i)^(n) = .^(n)C_(0) + .^(n)C_(1) i+.^(n)C_(2) i^(2)+.^(n)C_(3)i^(3)+.^(n)C_(4)i^(4)+"...."`
`= (.^(n)C_(0) - .^(n)C_(2) + .^(n)C_(4) - .^(n)C_(6) + ".....")+`
`i(.^(n)C_(1) - .^(n)C_(3) + .^(n)C_(5) - .^(n)C_(7) + "..... ")`
Also , `(1+r)^(n) = [(sqrt(2))^(n)((1)/(sqrt(2))+(i)/(sqrt(2)))^(n)]`
`=2^(n//2)(cos'(pi)/(4) + isin'(pi)/(4))^(n)`
`= 2^(n//2)(cos'(npi)/(4) + isin'(npi)/(4))`
`rArr 2^(pi//2) (cos'(npi)/(4) + isin'(npi)/(4)) = (.^(n)C_(0) - .^(n)C_(2) + .^(n)C_(4) - .^(n)C_(6) + ".....")+i(.^(n)C_(1) - .^(n)C_(3) + .^(n)C_(5)-.^(n)C_(7)+".....")`
Comparing Real and Imaginary parts of both sides, we get
`.^(n)C_(0) - .^(n)C_(2) + .^(n)C_(6) + "....." = 2^(n//2) cos'(npi)/(4) "....."(1)`
`.^(n)C_(1) - .^(n)C_(3) + .^(n)C_(5) - .^(n)C_(7) + "........" = 2^(pi//2) sin'(npi)/(4)"....."(2)`
Now, `.^(n)C_(0) +.^(n)C_(2) + .^(n)C_(4) + .^(n)C_(6) + "....." = 2^(n-1) "......."(3)`
From (1) + (3), we get
`.^(n)C_(0) + .^(n)C_(4) + .^(n)C_(8)+.^(n)C_(12)+"....." = 1/2(2^(n-1) + 2^(n//2)cos'(npi)/(4))`
From `(3) - (1)`, we get
`.^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+ .^(n)C_(14)+ "......" = 1/2(2^(n-1)-2^(n//2)cos'(npi)/(4))`
From (2) + (4), we get
`.^(n)C_(1) + .^(n)C_(5) + .^(n)C_(9) + .^(n)C_(13) + "....." = 1/2(2^(n-1) + 2^(n//2) sin '(npi)/(4))`
From (4) - (2), we get
`.^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "........." = 1/2(2^(n-1)-2^(n//2).sin'(npi)/(4))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(4)=.^(n)C_(6) , then find .^(n)C_(9) .

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

If .^(n)C_(7)=.^(n)C_(2) , then find .^(n)C_(2) .

If .^(n)C_(3)=.^(n)C_(2) , then find .^(n)C_(2) .

Evaluate .^(n)C_(0).^(n)C_(2)+.^(n)C_(1).^(n)C_(3)+.^(n)C_(2).^(n)C_(4)+"...."+.^(n)C_(n-2).^(n)C_(n) .

If .^(n)C_(5)=.^(n)C_(4) , then find .^(n)C_(7) .

If .^(n)C_(5)=.^(n)C_(3) , then find .^(n)C_(4) .

If .^(n)C_(4)=.^(n)C_(2) , then find .^(n)C_(3) .

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .