Home
Class 12
MATHS
Prove that (C0+C1)(C1+C2)(C2+C3)(C3+C...

Prove that `(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)` = `(C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)`

Text Solution

Verified by Experts

We have, `(C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))"...."(C_(n-1)+C_(n))`
`=C_(1)C_(2)"...."C_(n-1)C_(n)(1+(C_(0))/(C_(1)))(1+(C_(1))/(C_(2)))(1+(C_(2))/(C_(3)))"....."(1+(C_(n-1))/(C_(n)))`
`=C_(1)C_(2)"...."C_(n-1)C_(n)(1+1/n)(1+2/(n-1))(1+3/(n-2))"...."(1+n/1)`
`=C_(1)C_(2)"....."C_(n-1)C_(n)((n+1)^(n))/(n!)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , t h e n C_0-(C_0+C_1)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+ ...+(-1)^(n-1)(C_0+C_1+ C_(n-1)) , where n a) is even integer b) is a positive value c) a negative value d) divisible by 2^(n-1)

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot