Home
Class 12
MATHS
Find the sum 1 xx 2 xx .^(n)C(1) + 2 xx ...

Find the sum `1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n)`.

A

A. `n(n+1)2^(n-1)`

B

B. `n(n+3)2^(n-2)`

C

C. `2^n .^(2n)C_(n)`

D

D. none of this

Text Solution

Verified by Experts

Method I :
`1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "...." + n xx (n+1) xx .^(n)C_(n)`
`= underset(r=1)overset(n)sumr(r+1)..^(n)C_(r)`
`= underset(r=1)overset(n)sum(r+1)[n..^(n-1)C_(r-1)]`
`= n underset(r=1)overset(n)sum((r-1)+2).^(n-1)C_(r-1)`
`= nxxunderset(r=1)overset(n)sum[(r-1)..^(n-1)C_(r-1)+2..^(n-1)C_(r-1)]`
`= nxx n(n-1)underset(r=2)overset(n)sum.^(n-2)C_(r-2)+(2n)underset(r=1)overset(n)sum.^(n-1)C_(r-1)`
`= n xx (n-1) xx 2^(n-2) + 2n xx 2^(n-1)`
` = n(n+3)xx2^(n-2)`
Method II :
We have `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x + .^(n)C_(2)x^(2) + "....." + .^(n)C_(n)x^(n)`
Differentiating w.r.t.x we get
`n(1+x)^(n-1) = .^(n)C_(1) + 2 xx .^(n)C_(2)x + 3 xx .^(n)C_(3)x^(2)"....." + nxx .^(n)C_(n) xx x^(n-1)`
Multipying with `x^(2)`, we have
`n(1+x)^(n-1) x^(2) = .^(n)C_(1) x^(2) + 2 xx .^(n)C_(2)x^(3) + 3 xx .^(n)C_(3)x^(4)"...."+n xx .^(n)C_(n)x^(n+1)`
Differentiating w.r.t. , we get
`m(n-1)(1+x)^(n-2)x^(2) + 2x xx n(1+x)^(n-1)`
`= 2.^(n)C_(1)x + 2 xx 3 xx .^(n)C_(2)x^(2) + 3 xx 4 xx .^(n)C_(3)x^(3) + "...." + n(n+1) xx .^(n)C_(n)x^(n)`
Now putting ` x = 1`, we get
`1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "...." + n xx (n+1) xx .^(n)C_(n)`
`= n (n+3) xx 2^(n-2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If .^(n)C_(4)=21xx.^(n/2)C_(3) , find the value of n.

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

The value of (""^(n) C_(1)+2. ""^(n) C_(2)+3. ""^(n)C_(3)+…+ n""^(n)C_(n)) is-