Home
Class 12
MATHS
Find the sum 3^n C0-8^n C1+13^n C2-18^n ...

Find the sum `3^n C_0-8^n C_1+13^n C_2-18^n C_3+dot +.....+(n+1)terms`

Text Solution

Verified by Experts

The general term of the series is `T_(r) = (-1)^(r ) (3+5r).^(n)C_(r )`
where `r = 0, 1, 2, "…..", n`. Therefore, sum of the series is given by
`S=underset(r=0)overset(n)sum(-1)^(r)(3+5r).^(n)C_(r)`
`=3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))+5(underset(r=1)overset(n)sum(-1)^(r ) n .^(n-1)C_(r-1))`
`= 3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))-5(underset(r=1)overset(n)sum(-1)^(r ) .^(n-1)C_(r-1))`
`= 3(1-1)^(n) - 5n(1-1)^(n-1)`
`= 0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum C_0+3C_1+3^2C_2+...+3^n C_ndot

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : 3.^(n)C_(0)-8.^(n)C_(1)+13.^(n)C_(2)-18.^(n)C_(3)+....."up to"(n+1)"terms" =0

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Find the sum .^1C_0+^2C_1+^3C_2+....+^(n+1)C_n ,where C_r=^n C_rdot

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot