Home
Class 12
MATHS
If x + y = 1, prove that sum(r=0)^(n) r"...

If `x + y = 1`, prove that `sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx`.

Text Solution

Verified by Experts

We have
`underset(r=0)overset(n)sumr.^(n)C_(r)x^(r )y^(n-r) = underset(r=1)overset(n)sumn.^(n-1)C_(r-1)x^(r-1)x^(1)y^(n-r)`
` = nx underset(r=1)overset(n)sum .^(n-1)C_(r-1)x^(r-1)y^((n-1)-(r-1))`
`= nx(x+y)^(n-1)`
` = nx , [:' x + y = 1]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

Find the sum sum_(r=0) .^(n+r)C_r .

If .^(n)P_(r)=x.^(n)C_(r) x=

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .