Home
Class 12
MATHS
Prove that .^(n)C(0) + (.^(n)C(1))/(2) ...

Prove that `.^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1)`.

Text Solution

Verified by Experts

Method I :
We have
`T_(r ) = (.^(n)C_(r-1))/(r ) = (.^(n+1)C_(r))/(n+1)`
`:.` Required sum `= underset(r=1)overset(n+1)sumT_(r)`
` = underset(r=1)overset(n+1)sum(.^(n+1)Cr)/(n+1)`
` = (.^(n+1)C_(1) + .^(n+1)C_(2) + "….." + .^(n+1)C_(n+1))/(n+1)`
` = ((.^(n+1)C_(0) + .^(n+1)C_(1) + .^(n+1)C_(2) + "......" + .^(n+1)C_(n+1))-1)/(n+1)`
`= (2^(n+1) - 1)/(n+1)`
Method II :
We have `(1+x)^(n)= .^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2)+"...."+.^(n)C_(n)x^(n)`
` :. underset(0)overset(1)int(1+x)^(n)dx = underset(0)overset(1)int(.^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2) + "...." + .^(n)C_(n)x^(n))dx`
`rArr [((1+x)^(n+1))/(n+1)]_(0)^(1)=[.^(n)C_(0)x+(.^(n)C_(1)x^(2))/(2)+(.^(n)C_(2)x^(3))/(3) + "....."+ (.^(n)C_(n)x^(n+1))/(n+1)]_(0)^(1)`
`rArr (2^(n+1))/(n+1) -1/(n+1)=.^(n)C_(0)+(.^(n)C_(1))/(2)+(.^(n)C_(2))/(3) + "......" + (.^(n)C_(n))/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that if ngt7 then .^(n-1)C_(3)+.^(n-1)C_(4)gt^(n)C_(3)

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .