Home
Class 12
MATHS
Prove that (C1)/1-(C2)/2+(C3)/3-(C4)/4+....

Prove that `(C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n`

Text Solution

Verified by Experts

We have,
`(1+x)^(n)=.^(n)C_(0)+.^(n)C_(1)x+.^(n)C_(2)x^(2)+"....."+.^(n)C_(n)x^(n)`
Dividing by x, we get
`((1-x)^(n)-1)/(x) = .^(n)C_(1) + .^(n)C_(2)x+"..... "+.^(n)C_(n)x^(n-1)`
`:. 1+(1+x)+(1+x)^(2) + "...."+(1+x)^(n-1)`
`= .^(n)C_(1) + .^(n)C_(2)x + "..." + .^(n)C_(n)x^(n-1)`.
`:. underset(-1)overset(0)int(.^(n)C_(1) + .^(n)C_(2)x+C_(3)x^(2) + "...."+.^(n)C_(n) x^(n-1))dx`
`= underset(-1)overset(0)int[1+(1+x)+"....."+(1+x)^(n-1)]dx`
`rArr [.^(n)C_(1)x+(.^(n)C_(2)x^(2))/(2)+(.^(n)C_(3)x^(2))/(3)+"...."+(.^(n)C_(n)x^(n))/(n)]_(-1)^(0)`
`= [x+((1+x)^(2))/(2)+((1+x)^(3))/(3)+"....."+((1+x)^(n))/(n)]_(-1)^(0)`
`rArr (.^(n)C_(1))/(1)-(.^(n)C_(2))/(2)+(.^(n)C_(3))/(3)-"...."+((-1)^(n-1))/(n).^(n)C_(n)=1+1/2+1/3+"......"+1/n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Prove that C_1+C_5+C_9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n).(C_(n))/(n+1)=(1)/(n+1)