Home
Class 12
MATHS
Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^...

Prove that `(3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum(-1)^(r ) ((.^(n)C_(r))/(.^(r+3)C_(3)))`
`= underset(r=0)overset(n)sum(-1)^(r)(n!)/((n-r)!r!)(3!r!)/((r+3)!)`
`= 3!underset(r=0)overset(n)sum(-1)^(r) (n!)/((n-r)!(r+3!))`
`=(3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r).^(n+3)C_(r+3)`
` = - (3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r+3).^(n+3)C_(r+3)`
`= - (3!)/((n+1)(n+2)(n+3))[-.^(n+3)C_(3) +.^(n+3)C_(4)-"....."+(-1)^(n+3).^(n+3)C_(n+3)]`
`= - (3!)/((n+1)(n+2)(n+3))[(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2)-.^(n+3)C_(3)+"...."+(-1)^(n+3).^(n+3)C_(n+3))-(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2))]`
`- (3!)/((n+1)(n+2)(n+3))[(1-1)^(n+3)-(1-(n+3))-((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3))[1-n-3+((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3)) ((n^(2)+3n+2))/(2)`
`= (3!)/(2(n+3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

prove that sum_(r=0)^n(-1)^r^n C_r . [ 1/(2^r)+(3^r)/(2^(2r))+(7^r)/(2^(3r))+(15^r)/(2^(4r))+ ......up to m terms ] = (2^(m n)-1)/(2^(m n)(2^n-1))

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot