Home
Class 12
MATHS
Find the following sum: sumsum(i ne j)...

Find the following sum:
`sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)`

Text Solution

Verified by Experts

(i) `underset(i ne j)(sumsum).^(n)C_(i)..^(n)C_(j)=(underset(i=0)overset(n)sumunderset(j=0)overset(n)sum.^(n)C_(i).^(n)C_(j))-underset(i=0)overset(n)sum(.^(n)C_(i))^(2)`
`= (underset(i=0)overset(n)sum.^(n)C_(i))(underset(j=0)overset(n)sum.^(n)C_(j))-underset(i=0)overset(n)sum(.^(n)C_(i))^(2)`
`= (2^(n))(2^(n))-.^(2n)C_(n) = 4^(n)-.^(2n)C_(n)`
(ii) `underset(0leiltjlen)(sumsum).^(n)C_(i)..^(n)C_(j)= ((underset(i=0)(sum)underset(j=0)(sum).^(n)C_(i).^(n)C_(j))-underset(i=0)(sum)(.^(n)C_(i))^(2))/(2)`
`= (2^(2n)-.^(2n)C_(n))/(2)`
(ii) `underset(0leiltjlen)(sumsum).^(n)C_(i)..^(n)C_(j)= ((underset(i=0)(sum)underset(j=0)(sum).^(n)C_(i).^(n)C_(j))+underset(i=0)overset(n)sum(.^(n)C_(i))^(2))/(2)`
`= (2^(2n) + .^(2n)C_(n))/(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .