Home
Class 12
MATHS
Prove that .^100 C0^(100)C2+^(100)C2^(10...

Prove that `.^100 C_0^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[.^(200)C_(98)-^(100)C_(49)]dot`

Text Solution

Verified by Experts

To find
`S = .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
Consider,
`.^(100)C_(0).^(100)C_(2)+.^(100)C_(1).^(100)C_(3) + .^(100)C_(2).^(100)C_(4)+.^(100)C_(3)+.^(100)C_(5)+"...." + .^(100)C_(98).^(100)C_(100)`
`= .^(100)C_(0).^(100)C_(98)+.^(100)C_(1).^(100)C_(97) + .^(100)C_(2).^(100)C_(96)+.^(100)C_(3).^(100)C_(95) + "....."+^(100)C_(98) .^(100)C_(0)`
= Coefficients of `x^(98)` in `(1+x)^(100) (1+x)^(100)`
`= .^(200)C_(98) " "(1)`
Also,
`.^(100)C_(0).^(100)C_(2)-.^(100)C_(1).^(100)C_(3) +.^(100)C_(2).^(100)C_(4)-.^(100)C_(3).^(100)C_(5)+"..."+.^(100)C_(98).^(100)C_(100)`
`=` Cefficient of `x^(98)` in `(1+x)^(100)(1-x)^(100)`
`=` Coefficient of `x^(98)` in `(1-x^(2))^(100)`
`= -.^(100)C_(49)`
Adding (1) and (2), we have
`2(.^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"...."+.^(100)C_(98).^(100)C_(100))`
`= [.^(200)C_(98)-.^(100)C_(149)]`
`rArr .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
`= 1/2[.^(200)C_(98) - .^(100)C_(49)]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (.^(101)C_(1))/(.^(101)C_(0)) + (2..^(101)C_(2))/(.^(101)C_(1)) + (3..^(101)C_(3))/(.^(101)C_(2)) + "….." + (101..^(101)C_(101))/(.^(101)C_(100)) is "____" .

The total number of different terms in the product (.^(101)C_(0) - .^(101)C_(1)x+.^(101)C_(2)x^(2)-"….."-.^(101)C_(101)x^(101))(1+x+x^(2)+"…."+x^(100))^(101) is "____" .

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

Prove that int_0^(102)(x-1)(x-2)..(x-100)xx(1/(x-1)+1/(x-2) +.... .+ 1/(x-100))dx=101 !-100 !

An equation a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99) The value of a_(98) is -

An equation a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99) The value of a_(99) is equal to -

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then which is true (a) A^(3)-A^(2)=A-I (b) det. (A^(100)-I)=0 (c) A^(200)=[(1,0,0),(100,1,0),(100,0,1)] (d) A^(100)=[(1,1,0),(50,1,0),(50,0,1)]

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+((100),(50))((200),(200)) equals (where ((n),(r ))="^(n)C_(r) )