Home
Class 12
MATHS
Let min N and C(r) = ""^(n)C(r), for 0 ...

Let m`in` N and `C_(r) = ""^(n)C_(r)`, for ` 0 le r len`
Statement-1: `(1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n)`
` = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!)`
Statement-2: For r `le`0
`""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r)`.


(a) Statement-1 and Statement-2 both are correct and Statement-2 is the correct explanation for the Statement-1.
(b) Statement-1 and Statement-2 both are correct and Statement-2 is not the correct explanation for the Statement-1.
(c) Statement-1 is correct but Statement-2 is wrong.
(d) Statement-2 is correct but Statement-1 is wrong.

Text Solution

Verified by Experts

`1/(m!).^(n)C_(0)+(n)/((m+1)!).^(n)C_(1)+(n(n-1))/((m+2)!).^(n)C_(2)+"....."+(n(n-1)xx"...."xx2xx1)/((m+2)!).^(n)C_(n)`
`= (n!)/((m+n)!)(((m+n)!)/(m!n!).^(n)C_(0)+((m+n)!n)/((m+1)!n!).^(n)C_(1)+((m+n)!n(n-1))/((m+2)!n!) xx .^(n)C_(2)+"....."+((m+n)!)/(n!)+"....."+((m+n)!)/(n!)(n(n-1)xx"....."xx2xx1)/((m+n)!).^(n)C_(n))`
`= (n!)/((m+n)!)(.^(m+n)C_(n).^(n)C_(0)+((m+n)!)/((m+1)!(n-1)!).^(n)C_(1)+((m+n)!)/((m+2)!(n-2)!)xx.^(n)C_(2) + "....."+((m+n)!)/(1)(1)/((m+n)!)(1)/((m+n)!) .^(n)C_(n))`.
`= (n!)/((m+n)!)(.^(m+n)C_(n).^(n)C_(0)+.^(m+n)C_(n-1).^(n)C_(1)+.^(m+n)C_(n-2).^(n)C_(2)+"...."+.^(m+n)C_(0).^(n)C_(n))`
`= (n!)/((m+n)!)`[coefficient of `x^(n)` in `(1+x)^(m+n)(1+x)^(n)`]
`= (n!)/((m+n)!)`[coefficient of `x^(n)` in `(1+x)^(m+2n)`]
`= (n!)/((m+n)!).^(m+2n)C_(n)`
`= (n!)/((m+n)!)((m+2n)!)/((m+n)!n!)`
`= ((m+2n)!)/((m+n)!(m+n)!)`
`= ((m+n+1)(m+n+2)(m+n+3)"...."(m+2n))/((m+n)!)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Statement 1: ""^m C_r+ ""^m C_(r-1)(""^nC_1)+ ""^mC_(r-2)(""^n C_2)+....+ ""^n C_r=0 , if m+n lt r Statement 2: ""^n C_r=0 , if n lt r (a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1. (b) Statement 1 and Statement 2, both are correct. Statement 2 is not the correct explanation for Statement 1. (c) Statement 1 is true but Statement 2 is false. (d) Statement 2 is true but Statement 1 is false.

Evaluate .^(n)C_(0).^(n)C_(2)+.^(n)C_(1).^(n)C_(3)+.^(n)C_(2).^(n)C_(4)+"...."+.^(n)C_(n-2).^(n)C_(n) .

.^(n-1)C_(r)+^(n-1)C_(r-1)=

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

Prove that 1/(m !).^n C_0+n/((m+1)!).^n C_1+(n(n-1))/((m+2)!).^n C_2+......+(n(n-1).....2xx1)/((m+n)!).^n C_n= ((m+n+1)(m+n+2)....(m+2n))/((m+n)!)

If (2lerlen) , then ""^(n)C_(r)+2.""^(n)C_(r+1)+""^(n)C_(r+2) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If m=.^(n)C_(2) show that , .^(m)C_(2)=3.^(n+1)C_(4)