Home
Class 12
MATHS
Prove that ^nC0 "^(2n)Cn-^nC1 ^(2n-2)Cn ...

Prove that `^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n`

Text Solution

Verified by Experts

We know that
`.^(2n)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n)`
`.^(2n-1)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-1)`
`.^(2n-2)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-2)`
`.^(2n-3)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-3)`
`.^(n)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(n)`
Thus, we have
`.^(n)C_(0).^(2n)C_(n)-.^(n)C_(1).^(2n-1)C_(n)+.^(n)C_(2).^(2n-2)C_(n)+"...."+(-1)^(n).^(n)C_(n).^(n)C_(n)`
= Coefficient of `x^(n)` in `[C_(0)(1+x)^(2n)-C_(1)(1+x)^(2n-1)+C_(2)(1+x)^(2n-2)-C_(3)(1+x)^(2n-3)+"...."+(-1)^(n)C_(n)(1+x)^(n)]`
`=` Coefficient of `x^(m)` in `(1+x)^(n)[C_(0)(1+x)^(n)-C_(1)(1+x)^(n-1)+C_(2)(1+x)^(n-2)-C_(3)(1+x)^(n-3)+"......"+(-1)^(n)C_(n)]`
`=` Coefficient of `x^(n)` in `(1+x)^(n)[(1+x)-1]^(n)`
`=` Coefficient of `x^(n)` in `(1+x)^(n)x^(n)`
`= 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

If (18x^2+12x+4)^n = a_0 +a_(1x)+ a_(2x)^2 +......+ a_(2n)x^(2n) , prove that a_r= 2^n3^r ( "^(2n)C_r + "^(n)C_1 "^(2n-2)C_r + "^(n)C_2 "^(2n-4)C_r + ....

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

If ninNN , then by principle of mathematical induction prove that, .^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+ . . .+.^(n)C_(n)=2^(n)(ninNN)

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that (2nC_0)^2-(2nC_1)^2+(2nC_2)^2+.....+(2nC_2n)^2=(-1)^n2nC_n

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(0) +2^(n)C_(1)+3^(n)C_(2)+…+(n+1)^(n)C_(n)=(n+2)*2^(n-1) .