Home
Class 12
MATHS
Prove that lim(xrarr0) ((1+x)^(n) - 1)/(...

Prove that `lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n`.

Text Solution

Verified by Experts

`underset(x=0)"lim"((1-x)^(n)-1)/(x)`
`= underset(xrarr0)"lim"([1+nx+(n(n-1))/(2!)x^(2)+(n(n-1)(n-2))/(3!)x^(3)+"....."]-1)/(x)`
`= underset(xrarr0)"lim"[n+(n(n-1))/(2!)x+(n(n-1)(n-2))/(3!)x^(2)+"..."]`
`= n+0+0+"...."`
`= n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: lim_(xrarr0)tanx/x=1

prove that lim_(xrarr0) log_(e)((sinx)/(x))=0

Prove that lim_(xrarr1)(x^2-sqrtx)/(sqrtx-1)=3

Evaluate : lim_(xrarr0)(sqrt(1+x)-1)/(x)

Show that lim_(xrarr0)(x^2sin(1/x))/(sinx)=0

Evaluate: lim_(xrarr0)x^x

Starting from underset(xrarra)"lim"(x^(n)-a^(n))/(x-a)=na^(n-1)" deduce that ," underset(xrarr0)"lim"((1+x)^(n)-1)/(x)=n.

Evaluate: lim_(xrarr0)(sqrt(1+x+x^2)-1)/x

Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist

Prove that lim_(xrarr0)sqrt(1-cosx)/x does not exist