Home
Class 12
MATHS
If x is very large as compare to y , the...

If `x` is very large as compare to `y ,` then prove that `sqrt(x/(x+y))dotsqrt(x/(x-y))=1+(y^2)/(2x^2)` .

Text Solution

Verified by Experts

`sqrt((x)/(x+y)) sqrt((x)/(x-y)) = ((1)/(1+y/x))^(1//2)((1)/(1-y/x))^(1//2)`
`= (1-(y^(2))/(x^(2)))^(-1//2) = 1+1/2.^(y^(2))/(x^(2))`
(ignoring higher powers of `y//x` as `y//x rarr 0`)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If x^y=y^x , then prove that (x/y)^(x/y)=(x)^((x)/(y)-1) .

If x>y prove that sqrt(y+sqrt(2xy-x^2))+sqrt(y-sqrt(2xy-x^2)) = sqrt(2x) .

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

If (x+y) prop (x-y), then prove that (x^(2)+y^(2)) prop xy .

if y = (x+sqrt(x^2+a^2))^n then prove that (dy)/(dx)= (ny)/(sqrt(x^2+a^2)

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

x^(y)=y^(x),x=2y

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

If x+y = z , then prove that 1/(log_((sqrt(z)-sqrt(y)))(x)) + 1/(log_((sqrt(z)+sqrt(y)))(x)) = 1 .

If x=tan t and y=tan pt , prove that, (1+x^(2))y_(2)+2(x-py)y_(1)=0