Home
Class 12
MATHS
Prove that .^(n)C(0) - .^(n)C(1) + .^(n...

Prove that `.^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r )`.

Text Solution

Verified by Experts

`.^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3)+"…"+(-1)^(r ) xx ,^(n)C_(r ) + "…"`
Coeffciint of `x^(r )` in
`(.^(n)C_(0) - .^(n)C_(1)x + .^(n)C_(2)x^(2) - .^(n)C_(3)x^(3) + "….." + (-1)^(r) xx .^(n)C_(r) + "…..") xx (1+x + x^(2)+x^(3)+"…."+x^(r ) + "....")`
`=` Coefficient of `x^(r)` in `(1-x)^(n)(1-x)^(-1)`
`=` Coefficient of `x^(r )` in `(1-x)^(n-1)`
`= (-1)^(r) xx .^(n-1)C_(r )`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

.^(n-1)C_(r)+^(n-1)C_(r-1)=

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n