Home
Class 12
MATHS
Prove that (""^n C0)/x-(""^n C1)/(x+1)+(...

Prove that `(""^n C_0)/x-(""^n C_1)/(x+1)+(""^n C_2)/(x+2)-.....+(-1)^n(""^n C_n)/(x+n)=(n !)/(x(x+1) . . . (x-n)),` where `n` is any positive integer and `x` is not a negative integer.

Text Solution

Verified by Experts

Let
`f(x) = (n!)/(x(x+1)(x+2)"...."(x+n))`
`= (A_(0))/(x) + (A_(1) )/(x+1) + (A_(2))/(x+2)+"...."+(A_(n))/(x+n)`.
(by partial fractions )
Then `A_(0)=[xf(x)]_(x=0)=(n!)/(1.2.3"...."n) =1=.^(n)C_(0)`
`A_(1) = [(x+1)f(x)]_(x) = - 1`
`= (n!)/((-1){1.2"....."(n-1)})`
`= (-(n!))/((n-1)!) = -.^(n)C_(1)`
`A_(2) = [(x+2)f(x)]_(x=-2)`
`=(n!)/((-2).(-1).1.2"....."(n-2))`
`= (n!)/(2!(n-2)!) = .^(n)C_(2)` and so on
Thus, `(n!)/(x(x+1)(x+2)"....."(x+n))`
`(.^(n)C_(0))/(x) - (.^(n)C_(1))/(x+1) + (.^(n)C_(2))/(x+2) - "....." + (-1)^(n) (.^(n)C_(n))/(x+n)" "(1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(x^(n)(1+x^(n))^((1)/(n))),n=a positive integer.

If f(x)=(a-x^n)^(1/n)," where "a gt0 and n is a positive integer, show that f[f(x)]=x.

Prove that the function f(x)= x^(n) is continuous at x= n, where n is a positive integer.

Find the coefficient of x^(-5) in ""^(n)C_(0)-""^(n)C_(1) ((2x-1)/(x))+""^(n)C_(2)((2x-1)/(x))^(2)-....+ (-1)^(n) ((2x-1)/(x))^(n)

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0

If f(x)=(a-x^(n))^(1/n),agt0 and n is a positive integer, then prove that f(f(x)) = x.

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

If f(x) = (p - x^n)^(1/n), p gt 0 and n is positive integer, then the value of f[f(x)]

Show : x-^(n)C_(1)(x+y)+^(n)C_(2)(x+2y)-^(n)C_(3)(x+3y)+....=0

Find the co-efficient of 1/x of the expansion of (1+x)^n(1+1/x)^n where n is a positive integer.