Home
Class 12
MATHS
Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q...

Given, `s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1` prove that `.^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n=2^n S_ndot`

Text Solution

Verified by Experts

`s_(n)` is in geometric progression, hence,
`s_(n) = (q^(n+1) -1)/(q-1) . q ne 1`
Also, `S_( n)` is geometric progression.
`:. S_(n) = (((q+1)/(2))^(n+1)-1)/(((q+1)/(2))-1) = ((q+1)^(n+1).-2^(n+1))/(2^(n)(q-1))`
Consider `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+.^((n+1))C_(3)s_(3)+"....."+.^((n+1))C_(n+1)s_(n)`
`.^((n+1))C_(1)((q-1)/(q-1))+.^((n+1))C_(2)(q^(2)-1)(q-1)+"......"+.^((n+1))C_(n+1)(q^(n+1)-1)/(q-1)`
`=(1/(q-1))[{.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)}-{.^((n+1))C_(1)+.^((n+1))C_(2)+"....."+.^((n+1))C_(n+1)}]`
`= ((1)/(q-1)) [{(1+q)^(n+1)-1}-{2^(n+1)-1}]`
Since
`{{:((1+q)^(n+1)=.^(n+1)C_(0)+.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)),(" "2^(n-1)=.^((n+1))C_(0)+.^((n+1))C_(1)+"...."+.^((n+1))C_(n+1)):}}`
`rArr ((1)/(q-1))[(1+q)^(n+1)-2^(n+1)-2^(n+1)]= ((1+q)^(n+1)-2^(n+1))/(q-1)`
Thus, `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+"....."+.^((n+1))C_(n+1)s_(n) = ((1+q)^(n+1)-2^(n+1))/(q-1)`
Therefore, `.^(n+1)C_(1) + .^((n+1))C_(2)s_(1) + "....."+.^((n+1))C_(n+1)s_(n+1)=2^(n)S_(n)` (Using (1))
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

Let S_n=1+q+q^2 +...+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 x S_1 ...+^101C_101 x S_100, then the value of alpha is

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)