Home
Class 12
MATHS
Prove that .^(n)C(1) - (1+1/2) .^(n)C(2...

Prove that `.^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" ``+ (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n`

Text Solution

Verified by Experts

Let `S = .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2 + 1/3) .^(n)C_(3) + "….."`
`+(-1)^(n-1)(1+1/2+1/3+"…."+1/n) .^(n)C_(n)`.
rth term of the series is
`T(r ) = (-1)^(r-1) . C_(r ) (1+1/2+1/3+"……"+1/r)`, where `C_(r) = .^(n)C_(r)`
Let us consider a series whose general term is
`T_(1)(r ) = (-1)^(r-1). C_(r)(1+x+x^(2)+"...."+x^(r-1))`
`= (-1)^(r-1). C_(r) ((1-x^(r))/(1-x))`
` = ((-1)^(r-1)C_(r))/(1-x) + ((-1)^(r)x^(r)C_(r))/(1-x)`
`rArr underset(r=1)overset(n)sum T_(1)(r ) = (1)/((x-1)) underset(r=1)overset(n)sum (-1)^(r) C_(r ) + (1)/((1+x))underset(r=1)overset(n)sum(-1)^(r). C_(r).x^(r )`
`rArr underset(r=1)overset(n)sumT_(1)(r ) = (1)/((x-1)) (0-x) + (1)/((1-x)) ((1-x)^(n) - 1) = (1-x)^(n-1)`
`= L` (say)
Clearly `S = underset(0 )overset(1)intLdx = underset(0)overset(1)int(1-x)^(n-1) dx = 1/n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .