Home
Class 12
MATHS
Prove that .^(n)C(0) + .^(n)C(5) + .^(n)...

Prove that `.^(n)C_(0) + .^(n)C_(5) + .^(n)C_(10) + "….."`
`= (2^(n))/(5) (1+2cos^(n)'(pi)/(5)cos'(npi)/(5)+2cos'(pi)/(5)cos'(2npi)/(5))`.

Text Solution

Verified by Experts

Here jump in the series is `'5'`. So, we use fifth roots of unity.
`(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x + .^(n)C_(2)x^(2)+.^(n)C_(3)x^(3)+"..."+.^(n)Cx^(n)`
Now, we put `x = 1, alpha, alpha^(2), alpha^(3), alpha^(4)`
where `alpha = cos 'a(2pi)/(5)+isin'(2pi)/(5)`.
Putting these values and then adding, we get
`(1+1)^(n) + (1+alpha)^(n) + (1+alpha^(2))^(n) + (1+alpha^(3))^(n) +(1+alpha^(4))^(n)`
`= 5(.^(n)C_(0) + .^(n)C_(10) + "....")`
`:. 5(.^(n)C_(0)+.^(n)C_(5) +.^(n)C_(10)+".....")`
`= 2^(n)+(1+alpha)^(n)+(1+bar(alpha))^(n)+(1+alpha^(2))^(n)+(1+bar(alpha^(2)))^(n)`
`=2^(n)+2Re(1+cos'(2pi)/(5)+isin'(2pi)/(5))^(n)+2Re(1+cos'(4pi)/(5)+isin'(4pi)/(5))^(n)`
`= 2^(n) + 2Re(2cos^(2) '(pi)/(5)i2sin'(pi)/(5)cos'(pi)/(5))^(n) + 2Re(2cos^(2)'(2pi)/(5)+i2sin'(2pi)/(5)cos'(2pi)/(5))^(n)`
`=2^(n)+2xx2^(n)cos^(n)'(pi)/(5)cos'(npi)/(5)+2xx2^(n)cos^(n)'(2pi)/(5) cos'(2npi)/(5)`
`:. (.^(n)C_(0)+.^(n)C_(5)+.^(n)C_(10)+"......")`
` = (2^(n))/(5)(1+2cos^(n)'(pi)/(5)cos'(npi)/(5)+2cos^(n)'(2pi)/(5)cos'(2npi)/(5))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

If .^(n)C_(5)=.^(n)C_(3) , then find .^(n)C_(4) .

If .^(n)C_(5)=.^(n)C_(4) , then find .^(n)C_(7) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that, cos(pi/5)-cos((2pi)/5)=1/2

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Evaluate : cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .