Home
Class 12
MATHS
Find the sum (sumsum)(0leiltjlen) ""^(n)...

Find the sum `(sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`.

Text Solution

Verified by Experts

`underset(0leiltjlen)(sumsum)j..^(n)C_(i)`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."+(n)]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."(r+(n-r))]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)(n-r)/(2)(r+1+n)`
`= 1/2 underset(r=0)overset(n)sum.^(n)C_(r) (n(n+1)-r-r^(2))`
` = 1/2 [n(n+1)underset(r=0)overset(n)sum.^(n)C_(r)-underset(r=0)overset(n)sumr^(n)C_(r)-underset(r=0)overset(n)sumr^(2)..^(n)C_(r)]`
`=1/2[n(n+1).2^(n)-n underset(r=0)overset(n)sum.^(n-1)C_(r-1)-n underset(r=0)overset(n)sumr..^(n-1)C_(r-1)]`
`=1/2[n(n+1).2^(n)-n.2^(n-1)-n underset(r=0)overset(n)sum((n-1)..^(n-2)C_(r-2)+.^(n+1)C_(r-1))]`
`= 1/2[n(2n+1).2^(n-1)-n(n-1).2^(n-2)-n.2^(n-1)]`
`= n(3n+1).2^(n-3)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .