Home
Class 12
MATHS
If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n...

If for `n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A ,` then find the value of `sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot`

Text Solution

Verified by Experts

Let
`S=underset(k=0)overset(2n)sum(-1)^(k)(k-2n)(.^(2n)C_(k))^(2)=-underset(k=0)overset(2n)sum(-1)^(k)(2n-k)(.^(2n)C_(k))^(2)`
`:. S =-(2n(.^(2n)C_(0))^(2)-(2n-1)(.^(2n)C_(1))^(2)+(2n-2)(.^(2n)C_(2))^(2)-"......."-1(.^(2n)C_(2n-1))^(2)+0(.^(2n)C_(2n))^(2))" "(1)`
or `S = -(2n(.^(2n)C_(2n))^(2)-(2n-1)(.^(2n)C_(2n-1))^(2)+(2n-2)(.^(2n)C_(2n-2))^(2)-"........"-1(.^(2n)C_(1))^(2)+0(.^(2n)C_(0))^(2))`
or `S = - (0(.^(2n)C_(0))^(2)-1(.^(2n)C_(1))^(2) + 2(.^(2n)C_(2))^(2)-"......"-(2n-1) xx (.^(2n)C_(2n-1))^(2)+2(.^(2n)C_(2n))^(2))" "(2)`
Adding (1) and (2), we get
`2S = -2n[(.^(2n)C_(0))^(2)-(.^(2n)C_(1))^(2)+(.^(2n)C_(2))^(2)-(.^(2n)C_(3))^(2)+"....."-(.^(2n)C_(2n-1))^(2)+(.^(2n)C_(2n))^(2)]`
or `2S = -nA`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

sum_(k=1)^ook(1-1/n)^(k-1) =?

(n)p_(r)=k^(n)C_(n-r),k=

Find the value of k if ^(k^2-2k)C_9 = ^(k^2-2k)C_6

The value of cot {sum_(n=1)^(23)cot^(-1)""(1+sum_(k-1)^(n)2k)} is

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)