Home
Class 12
MATHS
Prove that (C1)/2+(C3)/4+(C5)/6+=(2^(n)-...

Prove that `(C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot`

Text Solution

Verified by Experts

L.H.S. `=(underset(r=0)overset(n)sum.^(n)C_(r)sin2rx)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2x)" "(1)`
`0=(underset(r=0)overset(n)sum.^(n)C_(n-r)sin2(n-r)x)/(underset(r=0)overset(n)sum.^(n)C_(n-r)cos2(n-r)x)`
`=(underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)" "(2)`
`=(underset(r=0)overset(n)sum.^(n )C_(r)sin2rx+underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2rx+underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)`.
(Using `a/b = c/d = (a+c)/(b+d)` and using (1) and (2))
`= (underset(r=0)overset(n)sum.^(n)C_(r)[sin2rx+sin(2n-2r)x])/(underset(r=0)overset(n)sum.^(n)C_(r)[cos2rx+cos(2n-2r)x])`
`= (2sin nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x)/(2cos nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x) = tan nx`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=sum_(r=0)^n^n C_r , show that C_0+(C_1)/2++(C_n)/(n+1)=(2^(n+1)-1)/(n+1) .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+....=(2^(n)-1)/(n+1)

Prove that [(n+1)//2]^n >(n !)dot

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(1)-2^(n)C_(2)+3^(n)C_(3)-…+(-1)^(n-1).n^(n)C_(n)=0 .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)