Home
Class 12
MATHS
Prove that sum(r=0)^(n) ""^(n)C(r).(n-r)...

Prove that `sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n)`.

Text Solution

Verified by Experts

`S = underset(r=0)overset(n)sum.^(n)C_(r) . (n-r) cos'((2rpi)/(n))"……"(1)`
` = underset(r=0)overset(n)sum.^(n)C_(n-r).(n-(n-r))cos((2(n-r)pi)/(n))`
` :. S = underset(r=0)overset(n)sum.^(n)C_(r).cos((2rpi)/(n)) "……."(2)`
Adding (1) and (2), we get
`2S = n underset(r=0)overset(n)sum.^(n)C_(r).cos((2rpi)/(n)) = n xx Re(underset(r=0)overset(n)sum.^(n )C_(r)e^(i(2rpi)/(n)))`
`= n xx Re (1+e^((2pi)/(n)i))^(n)`
` = n xx Re (1+cos'(2pi)/(n)+isin'(2pi)/(n))^(n)`
`= nxx Re(2cos^(2)'(pi)/(n)+2isin'(pi)/(n) cos'(pi)/(n))^(n)`
`= n2^(n)cos^(n)'(pi)/(n) Re(cos'(pi)/(n) + isin'(pi)/(n))^(n)`
`= n2^(n)cos^(n)'(pi)/(n)Re(cos'(npi)/(n)+isin'(npi)/(n))`
`:. S = - n2^(n-1)cos^(n)'(pi)/(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Prove that .^(n)C_(0) + .^(n)C_(5) + .^(n)C_(10) + "….." = (2^(n))/(5) (1+2cos^(n)'(pi)/(5)cos'(npi)/(5)+2cos'(pi)/(5)cos'(2npi)/(5)) .

msum_(r=1)^n1/nsqrt((n+r)/(n-r))