Home
Class 12
MATHS
The coefficient of t^(24) in (1+t^2)^(12...

The coefficient of `t^(24)` in `(1+t^2)^(12)(1+t^(12))(1+t^(24))` is `^12 C_6+3` b. `^12 C_6+1` c. `^12 C_6` d. `^12 C_6+2`

Text Solution

Verified by Experts

The correct Answer is:
99

`((1-x^(2))+x^(4))^(3)(1-x)^(7)`
`= ((1-x^(2))^(3)+3x^(4)(1-x^(2))^(3) +3x^(4)(1-x^(2))^(2)+3x^(8)(1-x^(2))+x^(12))xx(.^(7)C_(0) - .^(7)C_(1)x+.^(7)C_(2)x^(2)-"…….."-.^(7)C_(7)x^(7))`
`:.` Coefficient of `x^(12) = .^(7)C_(0) - 3 xx .^(7)C_(2) + 6 xx .^(7)C_(4) - 7 xx .^(7)C_(6)`
` = 99`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.4|13 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.2|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x ^(24) in (1+ x^(2)) ^(12)(1+ x^(12))(1+ x ^(24)) is-

The coefficient of X^24 in the expansion of (1+X^2 )^12(1+X^12)(1+X^24)

The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 (c) 9 (d) 15

"Let "y=t^(12)+1 and x=t^(6)+1." Then "(d^(2)y)/(dx^(2)) is

If p^(4)+q^(3)=2(p gt 0, q gt 0) , then the maximum value of term independent of x in the expansion of (px^((1)/(12))+qx^(-(1)/(9)))^(14) is (a) "^(14)C_(4) (b) "^(14)C_(6) (c) "^(14)C_(7) (d) "^(14)C_(12)

The centroid of the triangle formed by the points (1,2),(2,4)and (-3,6) is -

Factorise : a^(2)-6ab+12bc-4c^(2)

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

If (1+x-2x^2)^6=1+a_1x+a_2x^2+……+a_(12)x^12 then

Find the value of determinant : |(6,7),(-1,2)|