Home
Class 12
MATHS
Prove that .^(n)C(0) +5 xx .^(n)C(1) + 9...

Prove that `.^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n)`.

Text Solution

Verified by Experts

`S = .^(n)C_(0) + 5 xx .^(n)C_(1)+9xx.^(n)C_(2)+"....."(4n-3)xx.^(n)C_(n-1)+(4n+1)xx.^(n)C_(n)"......"(1)`
`:. S = (4n+1).^(n)C_(n)+(4n-3).^(n)C_(n-1)+"...."+5.^(n)C_(1)+.^(n)C_(n)"....."(2)`
Adding (1) and (2), we get
`2S = (4n+2)(.^(n)C_(0)+.^(n)C_(1)+"....."+.^(n)C_(n-1)+.^(n)C_(n))`
`= (4n+2)2^(n)`
`rArr S = (2n+1)2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n

Prove that if ngt7 then .^(n-1)C_(3)+.^(n-1)C_(4)gt^(n)C_(3)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

If ninNN , then by principle of mathematical induction prove that, .^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+ . . .+.^(n)C_(n)=2^(n)(ninNN)