Home
Class 12
MATHS
Prove that .^n C0+^n C3+^n C6+=1/3(2^n+...

Prove that `.^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3))` .

Text Solution

Verified by Experts

Consider `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+.^(n)C_(4)+.^(n)C_(5)+.^(n)C_(6)+"....."`
`(1+omega)^(n) = .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)omega^(3)+.^(n)C_(4)omega^(4)+.^(n)C_(5)omega^(5)+.^(n)C_(6)omega^(6)+"......"`
`= .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)+.^(n)C_(4)omega+.^(n)C_(5)omega^(2)+.^(n)C_(6)+"......"`
`(1+omega^(3))^(n)= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega^(4)+.^(n)C_(3)omega^(6) +.^(n)C_(4)omega^(8)+.^(n)C_(5)omega^(10)+.^(n)C_(6)omega^(12)+"....."`
`= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega+.^(n)C_(3)+.^(n)C_(4)omega^(2)+.^(n)C_(5)omega + .^(n)C_(6)+"..."`
`:. 2^(n) +(1+omega)^(n)+(1+omega^(2))^(n) = 3(.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+".....")`
Now, `2^(n)+(1+omega)^(n)+(1+omega^(2))^(n)=2^(n)+2Re((1+omega)^(n))`
`= 2^(n) +2Re(1/2-i'(sqrt(3))/(2))^(n)`
`= 2^(n)+2Re(cos'(pi)/(3)-isin'(pi)/(3))^(n)`
`= 2^(n)+2cos'(npi)/(3)`
Hence, `.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+"...."=1/3(2^(n)+2cos'(npi)/(3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that C_1+C_4+C_7+....=1/3[2^n-2cos((n+1)/3pi)]

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that C_1+C_5+C_9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

If n=12 m(m in N), prove that .^n C_0-(.^n C_2)/((2+sqrt(3))^2)+(.^n C_4)/((2+sqrt(3))^4)-(.^n C_6)/((2+sqrt(3))^6)+.......= (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot