Home
Class 12
MATHS
Find the value of .^(4n)C0+^(4n)C4+^(4n)...

Find the value of `.^(4n)C_0+^(4n)C_4+^(4n)C_8+...+""^(4n)C_(4n)` .

Text Solution

Verified by Experts

The correct Answer is:
`2^(4n-2)+(-1)^(n)2^(2n-1)`

We have,
`.^(4n)C_(0) + .^(4n)C_(2)x^(2)+.^(4n)C_(4)x^(4)+"…."+.^(4n)C_(4n)x^(4n)`
`= 1/2[(1+x)^(4n) +(1-x)^(4n)]`
Putting `x = 1` and `x= i`, we get
`.^(4n)C_(0) + .^(4n)C_(2) + .^(4n)C_(4) + "……" + .^(4n)C_(4n)=1/2[2^(4n)]`
and `.^(4n)C_(0) - .^(4n)C_(2) + .^(4n)C_(4) - "....." + .^(4n)C_(4n)`
`= 1/2[(1+i)^(4n)+(1-i)^(4n)]`
Thus, `2[.^(4n)C_(0) + .^(4n)C_(4)+"......"+.^(4n)C_(4n)] = 2^(4n-1) + 1/2[sqrt(2)(cos'(pi)/(4)- isin'(pi)/(4))]^(4n)`
`= 2^(2n) (cosnpi + isin npi)+2^(2n) (cos npi - i sin npi)`
`= 2^(2n+1) cos n pi=2^(2n+1)(-1)^(n)`
`:. 2[.^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n)] = 2^(4n-1) + 1/2 2^(2n+1)(-1)^(n)`
`rArr .^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n) = 2^(4n-2) + (-1)^(n)2^(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

The value of (""^(n) C_(1)+2. ""^(n) C_(2)+3. ""^(n)C_(3)+…+ n""^(n)C_(n)) is-

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

If .^(n)C_(5)=.^(n)C_(3) , then find .^(n)C_(4) .

If .^(n)C_(4)=.^(n)C_(2) , then find .^(n)C_(3) .

If .^(n)C_(5)=.^(n)C_(4) , then find .^(n)C_(7) .

If .^(n)C_(4)=.^(n)C_(6) , then find .^(n)C_(9) .

Find the value of n such that (""^(n)P_(4))/(""^(n-1)P_(4))=(5)/(3), n gt 4