Home
Class 12
MATHS
Prove that underset(rles)(underset(r=0)o...

Prove that `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1`.

Text Solution

Verified by Experts

`underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum)).^(n)C_(s).^(s)C_(r)=underset(s=1)overset(n)sum.^(n)C_(s)(.^(s)C_(0)+.^(s)C_(1)+.^(s)C_(2)+"....."+.^(s)C_(s))`
`= underset(s=1)overset(n)sum.^(n)C_(s)2^(s)`
`= underset(s=0)overset(n)sum.^(n)C_(s)2^(s)-.^(n)C_(0)2^(0)`
`= (1+2)^(n)-1`
`= 3^(n) - 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Find underset(r=0) overset(10)sumr^ (10)C_(r).3^(r).(-2)^(10-r)

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

i^(2)=-1,"then"underset(n=0)overset(225)sumi^(n) is -

Evaluate : underset (nrarrinfty)lim underset(r=0)overset(n-1)sum 1/sqrt(4n^2-r^2)

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Evaluate underset(nrarrinfty)lim 1/n overset(4n)underset(r=1)sum r/(sqrt(n^2+r^2)

Prove that underset(r=1)overset(n)sum "tan"^(-1)(2r)/(r^(4)+r^(2)+2)="tan"^(-1)(n^(2)+n+1)-(pi)/(4)

Major product of the given reaction is CH_(3)-underset(CH_(3))underset(|)overset(CH_(3))overset(|)C-underset(CI)underset(|)(CH)-CH_(3)overset(C_(2)H_(5)O^-)rarr