Home
Class 12
MATHS
If (1+x-2x^2)^6=1+a1x+a2x^2+……+a(12)x^12...

If `(1+x-2x^2)^6=1+a_1x+a_2x^2+……+a_(12)x^12` then

Text Solution

Verified by Experts

The correct Answer is:
31

`(1+x-2x^(2))^(6) = 1+a_(1)x+a_(2)x^(2)+"…."+a_(12)x^(12)`
Putting `x = 1` and `x = - 1` and adding the results, we get
`64 = 2(1+a_(2)+a_(4)+"….")`
`:. a_(2)+a_(4)+a_(6)+"…."a_(12) = 31`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Let n be a positive integer such that (1+x+x^2)^n=a_0+a_1x+a_2x^2+…….+a_(2n)x^(2n) then sum_(r=0)^(2n) a_r is

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+.......+a_(2n)x^(2n) , then prove that a_0+a_2+a_4+....+a_(2n)=1/2(3^n+1) .

If log(1-x+x^2)=a_1x+a_2x^2+a_3x^3+……… then a_3+a_6+a_9+……… is equal to

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)X^(2n) ,show that a_0+a_3+a_6+.....=a_1+a_4+a_7+...=a_2+a_5+a_8+...=3^(n-1)

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If (1+x+x^2++x^p)^n=a_0+a_1x+a_2x^2++a_(n p)x^(n p), then find the value of a_1+2a_2+3a_3+ddot+n pa_(n p)dot

If (1+x)^n=a_0+a_1x+a_2x^2+…..+a_nx^n then show that (a_0-a_2+a_4-……)^2+(a_1-a_3+a_5-……)^2=a_0+a_1+a_2+……a_n