Home
Class 12
MATHS
Prove that (.^(2n)C0)^2-(.^(2n)C1)^2+(.^...

Prove that `(.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2` = `(-1)^n.^(2n)C_n`.

Text Solution

Verified by Experts

`underset(r=0)overset(2n)sum(-1)^(r)(.^(2n)C_(r))^(2)=underset(r=0)overset(2n)sum(-1)^(r).^(2n)C_(r).^(2n)C_(r)`
`= underset(r=0)overset(2n)sum(-1)^(r) .^(2n)C_(r).^(2n)C_(2n-r)`
= Coefficient of `x^(2n)` in `(1-x)^(2n)(1+x)^(2n)`
= Coefficient of `x^(2n)` is `(1-x)^(2n)`
`= (-1)^(n).^(2n)C_(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

The value of the sum (.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+(.^(n)C_(3))^(2)+....+(.^(n)C_(n))^(2) is -

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .