Home
Class 12
MATHS
Find the sum of the series .^(84)C(4)+6x...

Find the sum of the series `.^(84)C_(4)+6xx.^(84)C_(5)+15xx.^(84)C_(6)+20xx.^(84)C_(7)+15xx.^(84)C_(8)``+6xx.^(84)C_(9)+.^(84)C_(10)`.

Text Solution

Verified by Experts

The correct Answer is:
`.^(90)C_(10)`

`.^(84)C_(4) + 6 xx .^(84)C_(5) + 15 xx .^(84)C_(6)+20 xx .^(84)C_(7)+15 xx.^(84)C_(8)+6xx.^(84)C_(9)+.^(84)C_(10)`
`= .^(6)C_(6) xx .^(84)C_(4)+ .^(6)C_(5) xx .^(84)C_(5) + .^(6)C_(4) xx .^(84)C_(6)+ .^(6)C_(3) xx .^(84)C_(7) + .^(6)C_(2) xx .^(84)C_(8)+ .^(6)C_(1)xx.^(84)C_(9) + .^(6)C_(0) xx.^(84)C_(10)`
`=` Coefficient of `x^(10)` in `(1+x)^(6)(1+x)^(84)`
`=` Coefficient of `x^(10)` in `(1+x)^(90)`
`= .^(90)C_(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Find the sum of the series .^15 C_0+^(15)C_1+^(15)C_2+...............+^(15)C_7 .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

If .^(n)C_(4)=.^(n)C_(6) , then find .^(n)C_(9) .

Given are six 0' s, five 1' s and four 2's . Consider all possible permutations of all these numbers. [A permutations can have its leading digit 0 ]. How many permutations have the first 0 preceding the first 1 ? (a) "^(15)C_(4)xx^(10)C_(5) (b) "^(15)C_(5)xx^(10)C_(4) (c) "^(15)C_(6)xx^(10)C_(5) (d) "^(15)C_(5)xx^(10)C_(5)

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that , .^(15)C_(8)+^(15)C_(9)-.^(15)C_(6)-^(15)C_(7)=0

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by