Home
Class 12
MATHS
Prove that C0+2C1+4C2+8C3+.....+2^nCn=3^...

Prove that `C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n` .

Text Solution

Verified by Experts

`S=C_(0)-2^(2)C_(1)+3^(2)C_(2)-"....."+(-1)^(n)(n+1)^(2)C_(n)`
`T_(r) = (-1)^(r)r^(2).^(n)C_(r)`
`= (-1)^(r)r(r^(n)C_(r))`
`= (-1)^(r)r(n^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1)+1)(.^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1).^(n-1)C_(r-1)+.^(n-1)C_(r-1))`
`= n(-1)^(r)((n-1)^(n-2)C_(r-2)+.^(n-1)C_(r-1))`
`= n(n-1).^(n-2)C_(r-2)(-1)^(r-2)-n^(n-1)C_(r-1)(-1)^(r-1)`
`rArr S = underset(r=0)overset(n)sumT_(r)`
`= n(n-1)(1-1)^(n-2)-n(1-1)^(n-1)`
`=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

(1-x)^(n)=C_(0)-C_(1)x+C_(2)x^(2)-C_(3)x^(3)+...+C_(r)(-1)^(r)x^(r)+.....+(-1)^(n)x^(n) Show that , C_(1)+2C_(2)+3C_(3)+.....+n.C_(n)=n.2^(n-1)

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Using binomial theorem (without using the formula for .^n C_r ) , prove that .^nC_4+^m C_2-^m C_1.^n C_2 = .^m C_4-^(m+n)C_1.^m C_3+^(m+n)C_2.^m C_2-^(m+n)C_3^m.C_1 +^(m+n)C_4dot

Prove that C_1+C_4+C_7+....=1/3[2^n-2cos((n+1)/3pi)]

Prove that C_1+C_5+C_9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)