Home
Class 12
MATHS
Find the value of underset(0leiltjlen)(...

Find the value of `underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j))`.

Text Solution

Verified by Experts

The correct Answer is:
`n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`

`S=underset(lleiltjlen-1)(sumsum)(i.^(n)C_(i))(j.^(n)C_(j))`
`=n^(2)underset(lleiltjlen-1)(sumsum).^(n-1)C_(i-1).^(n-1)C_(j-1)`
`= n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .

Find the value of (1+x)^(n)+^(n)C_(1)(1+x)^(n-1).(1-x)+^(n)C_(2)(1+x)^(n-2)(1-x)^(2)+.....+(1-x)^(n)

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"