Home
Class 12
MATHS
Prove that .^n C0 .^n C0-^(n+1)C1 . ^n C...

Prove that `.^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n`.

Text Solution

Verified by Experts

`.^(n)C_(0).^(n)C_(0)-.^(n)C_(1).^(n+1)C_(1)+.^(n)C_(2).^(n+2)C_(2)-"....."`
`= .^(n)C_(0).^(n)C_(n)-.^(n)C_(1).^(n+1)C_(n)+.^(n)C_(2).^(n+2)C_(n)-"...."`
= Coefficient of `x^(n)` in `[.^(n)C_(0)(1+x)^(n)-.^(n)C_(1)(1+x)^(n+1)+.^(n)C_(2)(1+x)^(n+2)+"....."+(-1)^(n).^(n)C_(n)(1+x)^(2n)]`
= Coefficient of `x^(2)` in `(1+x)^(n)[.^(n)C_(0) - .^(n)C_(1)(1+x)+.^(n)C_(2)(1+x)^(2)-"......"+(-1)^(n).^(n)C_(n)(1+x)^(n)]`
= Coefficient of `x^(n)` in `(1+x)^(n)[1-(1+x)]^(n)`
= Coefficient of `x^(n)` in `(1+x)^(n) (-x)^(n)`
`= (-1)^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

Prove that .^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .