Home
Class 12
MATHS
The expression (sqrt(2x^2+1)+sqrt(2x^2-1...

The expression `(sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2x^2-1)))^6` is polynomial of degree

A

6

B

8

C

10

D

12

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`(2)/(sqrt(2x^(2)+1)+sqrt(2x^(2)-1)) = (2(sqrt(2x^(2)+1)-sqrt(2x^(2)-1)))/((2x^(2)+1)-(2x^(2)-1))`
`= sqrt(2x^(2)+1)-sqrt(2x^(2)-1)`
Thus, the given expression cen be written as
`(sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6)+(sqrt(2x^(2)+1)-sqrt(2x^(2)-1))^(6)`
But `(a+b)^(6)(a-b)^(6) = 2[a^(6)+.^(6)C_(2)a^(4)b^(4)b^(2)+.^(6)C_(4)a^(2)b^(4)+b^(6)]`
Therefore,
`(sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6) + (sqrt(2x^(2)+1)-sqrt(2x^(2)-1))^(6)`
`= 2[(2x^(2)+1)^(3)+15(2x^(2)+1)^(2)(2x^(2)-1) + 15(2x^(3)+1)xx(2x^(2)-1)^(2)+(2x^(2)--1)^(3)]`
Which is polynomial of degree 6.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

Solve : sqrt(2cos^2x+1)+sqrt(2sin^2x+1)=2sqrt2

Solve : sqrt(2cos^2x+1)+sqrt(2sin^2x+1)=2sqrt2

If (x+sqrt(x^2-1))/(x-sqrt(x^2-1))+(x-sqrt(x^2-1))/(x+sqrt(x^2-1))= 14 ,then find the value of x.

int (dx)/((1+x)sqrt(1+2x-x^(2)))

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

Solve sqrt(2 cos^(2)x+1)+ sqrt(2 sin^(2)x+1)=2 sqrt(2)

Simplify : (x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1)) If the result of the simplification is equal to 14, then find the value of x

Factorise : (sqrt(2)-1)x^(2)+2sqrt(2)x+(sqrt(2)+1)

CENGAGE PUBLICATION-BINOMIAL THEOREM-Single Correct Answer
  1. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  2. If (1+x)^5=a0+a1x+a2x^2+a3x^3+a4x^4+a5x^5, then the value of (a0-a2+a4...

    Text Solution

    |

  3. The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2...

    Text Solution

    |

  4. If the 6th term in the expansion of (1/x^(8//3)+x^2log(10)x)^8 is 5600...

    Text Solution

    |

  5. If in the expansion of (a-2b)^(n), the sum of 5^(th) and 6^(th) terms ...

    Text Solution

    |

  6. The number of real negative terms in the binomial expansion of (1+ix)^...

    Text Solution

    |

  7. The sum of rational in (sqrt2+root(3)(3)+root(6)(5))^10 is equal to

    Text Solution

    |

  8. The value of x for which the sixth term in the expansion of [2^(log)2s...

    Text Solution

    |

  9. The number of distinct terms in the expansion of (x+1/x+x^2+1/(x^2))^(...

    Text Solution

    |

  10. Find the sum 1 xx 2 xx .^(n)C(1) + 2 xx 3 xx .^(n)C(2) + "….." + n xx...

    Text Solution

    |

  11. If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1+x^(2))^(n-r)x^(2r), then the ...

    Text Solution

    |

  12. The fractional part of =(2^(4n))/15 is

    Text Solution

    |

  13. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  14. The remainder when the number 3^(256) - 3^(12) is divided by 8 is (a) ...

    Text Solution

    |

  15. The smallest integer larger than (sqrt(3) + sqrt(2))^(6) is

    Text Solution

    |

  16. The coefficient of x^5 in the expansion of (1+x^2)(1+x)^4 is

    Text Solution

    |

  17. Coefficient of x^(2)in the expansion of (x^(3) + 2x^(2) + x + 4)^(15) ...

    Text Solution

    |

  18. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  19. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  20. If (1+2x+x^(2))^(n) = sum(r=0)^(2n)a(r)x^(r), then a(r) =

    Text Solution

    |