Home
Class 12
MATHS
The value of sum(r=0)^(20)(-1)^(r )(""^(...

The value of `sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2)` is equal to

A

`(1)/(50xx51)`

B

`(1)/(52xx50)`

C

`1/(52xx51)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Here,
`T_(r)=(-1)^(r)(.^(50)C_(r))/(r+2)`
`=(-1)^(r)(r+1)(.^(50)C_(r))/((r+1)(r+2))`
`=(-1)^(r)(r+1)(.^(52)C_(r+2))/(51xx52)`
`= (-1)^(r)([(r+2)-1]^(52)C_(r+2))/(51xx52)`
`= (-1)^(r)([52.^(51)C_(r+1)-.^(52)C_(r+2)])/(51xx52)`
`= ([-52.^(51)C_(r+1)(-1)^(r+1)-.^(52)C_(r+2)(-1)^(r+2)])/(51xx52)`
`underset(r=0)overset(50)sum(-1)^(r)(.^(50)C_(r))/(r+2)`
` = -52((1-1)^(51)-.^(51)C_(0))/(51xx52)-((1-1)^(52)-.^(52)C_(0)+.^(52)C_(1))/(51xx52)`
`= 1/51-1/52`
`= 1/(51xx52)`
Alternate solution :
`(1-x)^(n)=underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)x^(r)`
or `x(1-x)^(n)=underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r)x^(r+1)`
Intergrating both sides withing the limits 0 to 1, we get
`underset(0)overset(1)intx(1-x)^(n)dx=underset(r=0)overset(n)sum(-1)^(r)(.^(n)C_(r))/(r+2)`
or `underset(r=0)overset(n)sum(-1)^(r)(.^(n)C_(r))/(r+2) = underset(0)overset(1)intx(1-x)^(n)dx`
`= underset(0)overset(1)int(1-x)x^(n)dx`(Replace x by `1-x`)
`= |(x^(n+1))/(n+1)-(x^(n+2))/(n+2)|_(0)^(1)`
`= (1)/(n+1)-(1)/(n+2)`
`= (1)/((n+1)(n+2))`
Now put `n = 50`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(20)r(20-r)( ^(20)C_r)^2 is equal to ?

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C_(r)) is "_____" .

The value of sum_(r=0)^(n-1) (""^nC_r)/(""^nC_r+ ""^n C_(r+1)) equals a. n+1 b. n/2 c. n+2 d. none of these

The value of sum_(r=0)^(10)(r)^(20)C_r is equal to 20(2^(18)+^(19)C_(10)) b. 10(2^(18)+^(19)C_(10)) c. 20(2^(18)+^(19)C_(11)) d. 10(2^(18)+^(19)C_(11))

CENGAGE PUBLICATION-BINOMIAL THEOREM-Single Correct Answer
  1. The value of sum(r=1)^(15)(r2^r)/((r+2)!) is (a).((17)!-2^16)/((17)!) ...

    Text Solution

    |

  2. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  3. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  4. sum(r=0)^(300)arx^r=(1+x+x^2+x^3)^(100). If a=sum(r=0)^(300)ar, then s...

    Text Solution

    |

  5. sum(r=0)^(300)arx^r=(1+x+x^2+x^3)^(100). If a=sum(r=0)^(300)ar, then s...

    Text Solution

    |

  6. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to ?

    Text Solution

    |

  7. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  8. Find the value of (sumsum)(0leiltjlen) (i+j)(""^(n)C(i)+""^(n)C(j)).

    Text Solution

    |

  9. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  10. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+.....oo

    Text Solution

    |

  11. sum(k=1)^ook(1-1/n)^(k-1) =?

    Text Solution

    |

  12. The coefficient of x in the expansion of {sqrt(1+x^2)-x}^(-1) in ascen...

    Text Solution

    |

  13. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to

    Text Solution

    |

  14. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  15. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  16. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1)

    Text Solution

    |

  17. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |

  18. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  19. If x is so small that x^3 and higher powers of x may be neglected, the...

    Text Solution

    |

  20. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |